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SUMMARY 
The flow about submerged, fully cavitating axisymmetric bodies at both zero and non-zero angle of attack is 
considered in this paper. A cavity closure model that relates the point of detachment, the angle that the 
separating streamline makes with the body and the cavity length is described. The direct boundary element 
method is used to solve the potential flow problem and to determine the cavity shape. A momentum integral 
boundary layer solver is included in the formulation so that shear stresses can be incorporated into the drag 
calculations. The numerical predictions based on the proposed closure model are compared with water 
tunnel measurements and photographs. 
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INTRODUCTION 

The flow field about a submerged, fully cavitating three-dimensional body poses several difficult 
problems for the analyst. These problems include determining the point at which the dividing 
streamline which defines the cavity detaches from the body, the angle at which the dividing 
streamline leaves the body, the shape of the cavity and the length of the cavity. By fully cavitating 
flows (following Plesset' and Arakeri') we mean that the flow is characterized by a single large 
vapour cavity enveloping some portion of the body. If the cavity extends past the end of the body, 
the body is said to be supercavitating. If the cavity reattaches on the body, the body is said to be 
partially cavitating. The problems associated with modelling flows about partially or supercavita- 
ting bodies are not easy to resolve because of the complex way that cavitation depends on the 
body geometry and the state of flow. The shape and extent of the cavity will have a significant 
effect on the resultant forces and moments acting on the body. Hence timely and inexpensive 
estimates of cavity shapes are desirable. 

There is presently no unified theory for modelling cavitating flows over bodies because of the 
complexities of the flow field and the lack of adequate experimental data. This necessitates the 
development of closure models to allow for the prediction of cavity shapes. Several closure 
models have previously been proposed for approximating the shape of the aft portion of the 
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cavity, the location of the point of detachment and the angle at which the dividing streamline 
leaves the body. Apparently, however, no closure model has been proposed for determining the 
cavity length. This is surprising, because none of these closure problems is independent. In this 
paper we propose a method of determining the cavity shape and length based on the relationship 
between the point of detachment, the angle at which the dividing streamline leaves the body and 
the cavity length. 

Perhaps the most widely discussed closure problem is that of determining the shape of the aft 
portion of the cavity in the region of turbulent two-phase flow. One of the oldest closure models 
(and perhaps still the most widely used) was formulated by Riabo~chinski.~ This model assumes 
longitudinal symmetry through the plane of maximum thickness of the cavity. However, a wide 
variety of competing closure models have been formulated, including the open wake model,4* the 
re-entrant jet 

Two closure problems which are generally considered together are those of determining the 
location of the point of detachment and the angle at which the dividing streamline separates from 
the body. In some cases, such as for bodies with discontinuous slopes, the point of detachment 
and the angle at which the dividing streamline leaves the body are easy to determine. In these 
situations the cavity detaches at the body juncture parallel to the attached flow.' However, if the 
body geometry is smooth, these problems are more difficult to resolve. From pure potential 
theory the curvature of the dividing streamline at the point of detachment must be finite, or 
equivalently, the dividing streamline must be parallel to the body at the point of detachment. This 
condition was first proposed by Brillouin' and Villat" and is designated as the smooth 
separation condition. The rationale for this condition is that it is impossible under the assumption 
of potential flow to maintain the cavitation pressure at a cusp in the geometry. Further, assuming 
the smooth detachment condition and remaining within the framework of potential theory, the 
point of detachment is located at the body station where the pressure first drops below the 
cavitation pressure. However, the experimental evidence often contradicts the smooth separation 
condition. 

There are essentially two different types of cavitation separation, which Arakeri' designates as 
nucleate and viscous laminar. For nucleate separation the smooth separation condition provides 
a reasonable closure model. However, for viscous laminar separation the experimentally deter- 
mined position of cavitation separation lies considerably downstream from that predicted by the 
smooth separation condition.'. '' Viscous laminar separation is observed on bodies which 
possess a laminar boundary layer separation under non-cavitating conditions. Further, from 
photographs of this type of cavitation it appears that the dividing streamline defining the cavity 
leaves the body at an oblique angle. Arakeri' developed a semi-empirical method to predict the 
position of the point of detachment for viscous laminar separation on smooth bodies. 

Numerical methods to predict cavity shapes on two-dimensional and axisymmetric bodies 
have been developed by Brennen," Mogel and Street," Furuya,I3 Pellone and Rowe,I4 
Dagan,' Aitchison and Karageorghis,' Lemonnier and Rowe' and others. These researchers 
have used many of the closure models discussed above in their algorithms. However, common to 
all their methods, the cavity length has been assumed to be known a priori. In practice the cavity 
length is not known a priori and therefore some method is necessary in order to predict this 
length. In this paper we formulate a closure model to predict the cavity length. We are using the 
term closure model here in a somewhat wider context than in the literature, in that the closure 
model is used not only to approximate the shape of the aft portion of the cavity but also to 
determine the point of detachment, the angle that the dividing streamline makes with the attached 
flow and the cavity length. In order to validate the proposed closure model, we compare the 
results based on the model with a wide variety of water tunnel data. 

the vortex model' and the displacement thickness model.' 
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The closure model to predict the cavity length is based on the relationship between the point of 
detachment, the angle at. which the dividing streamline leaves the body and the cavity length. We 
assume for our closure model that the point of detachment and the angle that the dividing 
streamline makes with the body are known. In particular, we limit our attention in this paper to 
fully cavitating flows about bodies without laminar separation bubbles, for which the smooth 
separation condition is valid. Given the point of detachment as determined from the smooth 
separation condition and an assumed cavity length, we employ the direct boundary element 
method (DBEM) to determine the shape of a constant pressure streamline representing the cavity, 
which we will call the dividing streamline. This is readily accomplished by the DBEM except at 
the leading and trailing edges of the dividing streamline. The resulting shape of the dividing 
streamline can be quite different than the cavity formation observed in the water tunnel. The 
reason for this is due, for the most part, to the fact that the pressure at the leading edge of the 
dividing streamline is not equal to the cavitation pressure. This in turn is a consequence of the fact 
that the angle that the dividing streamline makes with the body does not satisfy the smooth 
separation condition. Hence the criterion for whether the dividing streamline will accurately 
approximate the shape of the cavity surface is based on whether the angle at which the dividing 
streamline leaves the body satisfies the smooth separation condition. If the angle is incorrect, then 
the assumed cavity length must be adjusted until the angle matches the prescribed angle. Only 
when the smooth separation condition is satisfied will the condition of constant pressure extend 
to the leading edge of the dividing streamline. We discuss the mechanics of adjusting the cavity 
length in order to achieve the proper angle that the dividing streamline makes with the body at 
the point of detachment. 

In the following sections we apply our closure model to a wide variety of body geometries and 
flow conditions. We consider both axisymmetric flows and flows at an angle of attack. After 
considering several purely potential solutions, we incorporate a momentum integral boundary 
layer solution into our numerical formulation in order to more accurately calculate the drag force 
exerted on cavitating bodies. In these calculations we show that it is important to be able to 
accurately predict the cavity length. 

PROBLEM FORMULATION AND NUMERICAL PROCEDURE 

The governing equation, assuming incompressible, irrotational and inviscid flow, in terms of the 
potential function q5 is given by Laplace's equation. The potential function can be subdivided into 
two parts: one part due to the free stream, 4fs, and the other part due to the perturbation caused 
by the body and cavity, q5p. A typical problem geometry is shown in Figure 1. Initially we must 
assume a position for the cavity. Let rl represent the wetted portion of the body and r2 represent 
the surface of the cavity. Then the differential system can be written as 

(:)'+( $)2 = c2 on r2, (3) 

where V2 is the three-dimensional Laplacian operator, a/an is the derivative in the direction of the 
outward normal to the surface and C is a constant representing the liquid velocity along the 
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Figure 1. Typical problem geometry 

cavity surface. This constant is related to the cavitation number K through the equation 

P - P ,  K=“- -c2-1, 
P v2,/2 

(4) 

where P ,  is the free stream pressure, P, is the pressure inside the cavity,* p is the liquid density 
and V, is the free stream velocity. This problem is highly non-linear, not only because (3) 
represents a non-linear boundary condition but also because the position of the boundary T2 is 
unknown a priori. Nevertheless, assuming the point of detachment and the cavity length, a 
solution can be found to the differential system discussed above except at the leading and trailing 
edges of the cavity, the so-called detachment and reattachment zones. 

We use a displacement thickness model to connect the cavity to the body in the reattachment 
zone. The displacement thickness model was selected after performing several numerical ex- 
periments. If the boundary element node just upstream of the reattachment node is a midside 
node, the displacement thickness is chosen as 75% of the cavity thickness at the next upstream 
node under the cavity. If the boundary element node just upstream of the reattachment node is an 
edge node, the displacement thickness is chosen as 25% of the cavity thickness at the next 
upstream node under the cavity. The actual values chosen for the displacement thicknesses were 
selected because they improved the overall convergence of the numerical algorithm without 
having much influence on the upstream shape of the cavity. Using the displacement thickness 
model, the calculated pressure at the last two nodes under the cavity may not be equal to the 
cavitation pressure. Nevertheless, the flow is two-phase, bubbly and turbulent in this region, thus 
making a cavity termination model necessary. 

The solution determined using the displacement thickness model may still not approximate the 
physical cavity because of the selection of an improper point of detachment and improper cavity 
length. In the present paper we will assume that we can correctly predict the point of detachment 
and focus on .determining the correct cavity length. This is accomplished by an inner and outer 

* In this paper we have chosen to define the cavitation number using the measured cavity pressure rather than the vapour 
pressure. This definition is consistent with most experiments cited in this work, e.g. those of Stinebring et al.” and 
O”eil118, where actual cavity pressures were measured. However, there are several experiments cited in this work where 
the cavitation number is defined in terms of the vapour pressure. Rouse and McNown’’ have shown that in experiments 
with blunt headforms, where boundary layer separation has occurred, the pressure in the cavity is greater than the vapour 
pressure. However, for slender headforms the experimental results indicate that the cavity pressure is very close to the 
vapour pressure for a wide range of cavitation numbers. Since the experimental results cited in this paper are for fairly 
slender headforms without laminar separation, we will use a single definition for the cavitation number and not 
distinguish between measured cavity pressure and assumed vapour cavity pressure. 
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iteration. In the inner iteration a constant pressure streamline is determined for the assumed 
cavity length using a Newton-Raphson iteration. In the outer iteration the cavity length is 
adjusted until our closure condition is satisfied. 

The inner iteration 
- 

Given a point of detachment and cavity length, an initial cavity shape must be assumed. The 
initial estimate of the cavity shape can have a large influence on the convergence rate and 
subsequent cost of the method. We discuss in the results how this initial estimate is made for 
several body geometries. We employ the direct boundary element method (DBEM) in our 
calculations. Following standard formulation procedures for the DBEM (see e.g. Reference 20), 
4p may be represented in terms of a boundary integral as 

where = rl + Tz represents the wetted portion of the body and the cavity surface. The free space 
Green function G(<, x) is given by 

The coefficient q(<) can be calculated from ( 5 )  by assuming a constant source strength $p along 
the surface and hence is given by 

The integral equation (5) is discretized by approximating the boundary r with isoparametric 
boundary elements. The element library used in this research consists of the six-node triangular 
element and the nine-node quadrilateral element. Double nodes are placed along all geometric 
edges to resolve the ambiguity in the normal direction and enhance the accuracy of the solution.21 
Collocating (5) at each of the N nodes within the boundary elements leads to the system of N 
equations given symbolically by 

where 4j  and 4; represent the values of the perturbed potential function and its normal derivative 
respectively at the collocation nodes within the boundary elements. In traditional boundary 
element methods, either the perturbed potential &, the flux 4; or a linear combination of the two 
is specified at each collocation node and (8) is rearranged (assembled) in order to solve for the 
remaining unknowns. In the present analysis, only one of the two boundary conditions, (2) or (3), 
can be prescribed along the cavity surface Tz. In general, if the kinematic condition (2) is 
prescribed, then the dynamic condition (3) will not be satisfied, and vice versa. 

We consider a parametrization of the cavity. For axisymmetric bodies at 0" angle of attack, this 
parametrization can be represented in terms of the radii ri at body stations z,. An alternative 
representation is in terms of the coefficients a, of the truncated Fourier sine series 

r(z) = f an sin(nnz), 
n = l  

(9) 

where r represents the radius at the body station z.  For an axisymmetric body at an angle of 
attack we can represent the cavity in terms of the radii rij at body stations z ,  and the polar angle 
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6,. As a generalization we consider the cavity to be parametrized by the coefficients 
cl, c2, . . . , c,. We impose the no-penetration condition (2) at the boundary element nodes on the 
surface of the cavity. As mentioned above, upon solution of the discretized boundary element 
equations, the condition of constant velocity along the surface of the cavity (3) will not be 
satisfied. However, these velocities will be functions of the coefficients ci. Therefore the condition 
of constant velocity at the nodes on the surface of the cavity can be written in symbolic form as 

F ( c l , c z , .  , . ,c,)=O. 

The non-linear implicit vector equations represented by (10) are solved by iteration using a 
Newton-Raphson scheme. Since the explicit form of F is unknown, the partial derivatives dF/dc, 
contained in the Jacobian matrix are determined by perturbing the coefficients ci individually, 
determining the potential solution on the perturbed cavity shape and using a finite difference 
approximation for the partial derivatives. Typically, converged shapes could be determined 
within five iterations. However, since the cavity thickness at the leading edge is prescribed to be 
zero, it is not a parameter of the cavity modelling and hence the dynamic boundary condition at 
the leading edge of the cavity cannot be satisfied in the inner iteration. Thus an outer iteration in 
which the cavity length is adjusted is necessary in order to satisfy the dynamic boundary 
condition at the cavity leading edge. 

The outer iteration 

Although a solution for the shape of the cavity with the assumed point of detachment and 
length satisfying (1H3) can be generated, it may be physically unrealistic in that it may be too 
thick or too thin. We propose the following closure model. As mentioned previously, we assume 
that the point of detachment and the angle at which the dividing streamline leaves the body are 
known. There is a relationship between the assumed cavity length, the cavity thickness and the 
angle at which the cavity leaves the body. We use the term cavity in a loose sense here, in that the 
shapes generated in the inner iteration do not satisfy the dynamic boundary condition at the 
leading edge of the cavity. From numerical experiment it was determined that as the assumed 
cavity length is increased, the cavity becomes thicker and the angle at which the cavity leaves the 
body increases. Hence in the outer iteration, if the angle at which the cavity leaves the body 
calculated in the previous iteration is too small, the assumed cavity length is increased. Similarly, 
if the angle is too large, the assumed cavity length is decreased. The length is adjusted until the 
dividing streamline leaves the body at the prescribed angle. This iteration then determines the 
unique cavity length for which the dynamic boundary condition is satisfied everywhere along the 
cavity surface except at the last two boundary element nodes where the displacement thickness 
model is applied. Although it is possible to perform the outer iteration using a Newton-Raphson 
method, it proved more economical to use educated trial and error to adjust the cavity length. 

RESULTS FOR AXISYMMETRIC FLOWS 

We first consider a 1 calibre ogive cylinder with the cavitation number given by K = 0-24. The 
length of the body is 4.866 calibre. Since this body is relatively slender, we do not expect a laminar 
separation. Hence we assume the smooth separation condition. On this basis the leading edge of 
the cavity is set at z =036603 calibre, since this is where the pressure drops below the cavitation 
pressure on the fully wetted body. The results of the inner iteration for three assumed cavity 
lengths are shown in Figure 2. The cavity shape in Figure 2(a) is seen to penetrate into the ogive 
surface, which is physically impossible. The cavity shape in Figure 2(b) is seen to be essentially 
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Figure 2. Calculated cavity shapes for 1 calibre ogive body with cavitation number K = 0.24: (a) cavity length L = 1.1, 
(b) L = 2.2, (c) L = 3.8 

tangent to the ogive surface at its leading edge. The cavity shape in Figure 2(c) is seen to leave the 
ogive surface at an oblique angle. Using the closure model discussed in the previous section 
consistent with the smooth separation condition, the cavity shape shown in Figure 2(b) is chosen 
as the one best representing the actual physical cavity. The cavity is compared with the water 
tunnel photographs and measurements of Rouse and McNownlg in Figure 3. The comparison of 
the measured and computed cavity shapes is quite good over the entire length of the cavity. The 
measured and computed pressure distributions also compare quite well except near the point of 
reattachment. However, as was already mentioned, the modelling of the aft portion of the cavity is 
deficient because the flow is non-steady and turbulent in this region and this is where the 
displacement thickness model is imposed. 

We next consider a body comprised of a 45" conical head and a cylindrical midbody with the 
cavitation number given by K = 0.30. The length of the body is 5.207 calibre. For this body with 
the abrupt change in normal direction at the juncture between the conical nose and the cylindrical 
midbody, the cavity detachment is at the body juncture and the cavity must leave the body at a 
22.5" angle. We show similar results in Figures 4 and 5 as were shown for the ogive body in 
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Figure 3. Comparison of DBEM and water tunnel results for 1 calibre ogive body with cavitation number K =0.24 
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Figure 4. Calculated cavity shapes for 45" cone-cylinder body with cavitation numbers K = 0.3: (a) cavity length L = 1.0, 
(b) L = 1.8, (c) L = 2 6  
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Figure 5. Comparison of DBEM and water tunnel results for 45" cone-cylinder body with cavitation number K = 0 3  

Figures 2 and 3. The cavity shape in Figure 4(b) is seen to possess the proper angle at the leading 
edge and hence is chosen as the one best representing the actual physical cavity. This cavity is 
compared with the water tunnel photographs and measurements of Rouse and M c N ~ w n ' ~  in 
Figure 5. Again the comparisons are quite good. 

As discussed in the previous section, there are two iterations being performed to determine the 
cavity shape. In the inner iteration the cavity length is assumed and a Newton-Raphson iteration 
is performed to determine the location of the constant pressure streamline. The rate of conver- 
gence of the inner iteration is dependent on the initial estimate for the location of the dividing 
streamline. In fact, if the initial estimate is poor, the iteration may not converge at all. It is 
therefore beneficial to have a method for generating initial estimates of the cavity shape capable of 
reducing the computational costs. Following Wolfe et the initial estimates for the ogive 
bodies are generated by assuming the point of detachment and the cavity length and then fitting 
an arc of a circle through these points which is tangent to the body at the point of detachment. 
The convergence of the Newton-Raphson iteration with this initial cavity shape is demonstrated 
in Figure 6 for the cavity on the 1 calibre ogive body shown in Figure 2(b). In general, we could 
achieve pressures at the nodes of the boundary elements comprising the cavity that were within 
0.1% of the cavitation pressure within five iterations. 

A comparison of the DBEM results generated using the current closure model (assuming the 
smooth separation condition) with the water tunnel results of Rouse and McNownlg for a variety 
of headforms with cylindrical midbodies is shown in Table I. The DBEM results are seen to  be in 
good agreement with the water tunnel results except possibly for the hemispherical head at a 
cavitation number K=0.24. In this case the predicted cavity length is 14% too short. It is 
possible, however, that for this relatively blunt body a small laminar separation bubble exists and 
hence the smooth separation condition would no longer apply. 

We next consider in more detail the body comprised of a 45" conical nose and a cylindrical 
midbody. For this body the point of detachment is at the body juncture and the angle of the cavity 
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Figure 6. Coefficient-of-pressure calculations for assumed initial cavity shape and cavity shapes determined from first 
two Newton-Raphson iterations 

Table I. Comparisons between DBEM results and water tunnel results for limited cavitation on axisym- 
metric bodies 

Headform 

~ ~ ~~~~~ 

Cavity length Maximum thickness 
Cavitation 

number DBEM Experiment DBEM Experiment 

Ogive (025 calibre) 
Hemispherical 
Hemispherical 
Hemispherical 
Ogive (1 calibre) 
Ogive (1 calibre) 
Ogive (1 calibre) 
Ogive (2 calibre) 
Conical (45") 
Conical (45") 
Conical (90") 

0.5 
0.24 
0.32 
0.40 
0.24 
0.32 
0.40 
0.20 
0.3 
0.5 
0.5 

1.4 
3.3 
1.9 
1.2 
2.0 
075 
0.66 
1.7 
1.8 
082 
1.70 

1.3 
3.8 
1.7 
1.2 
2.1 
074f t  
0.64*t 
1.8 
1.8 
083 
1.60 

015 
0.20 
0.12 
@08 
0.10 
0.05 
0.04 
0.06 
0.12 
007 
0.23 

0.15 
0.25 
0.11 
Q07 
009 
-t 
--t 
0.08 
013 
0.08 
0.22 

~~~ 

* The cavity length was estimated from the pressure data provided by Rouse and M c N ~ w n . ' ~  
t The cavity thickness and length were not discernible form the water tunnel photographs. 
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at the point of detachment is parallel to the attached flow. Stinebring et al.” performed a series of 
water tunnel experiments to determine the relationship between the cavity length and the 
cavitation number for this body. Self and R i ~ k e n ~ ~  performed a similar set of experiments on a 
45” supercavitating conical body with no afterbody. Self and Ripken considered vapour cavities 
while Stinebring et al. considered ventilated cavities. In addition, Self and Ripken measure the 
maximum cavity diameter. Semi-empirical expressions for the cavity length and maximum cavity 
diameter on supercavitating conical bodies were determined by Rei~hardt.’~ We compare the 
present DBEM results for the cavity length with these sets of results in Figure 7. The DBEM 
results match the two sets of experimental results and Reichardt’s semi-empirical formula very 
well for small cavitation numbers. As the cavitation number increases, the various sets of results 
diverge somewhat but are still fairly consistent. There are several factors which could contribute 
to the discrepancies in the results for the larger cavitation numbers. At these larger cavitation 
numbers the cavities are relatively short. The effects of the afterbody (compared to cones without 
afterbodies), the differences between vapour cavities and ventilated cavities and the difficulties in 
determining the cavity lengths from photographs could be more pronounced for shorter cavities. 
Nevertheless, the DBEM results compare favourably with the data, further demonstrating the 
validity of the closure model. The relationship between the maximum cavity thickness and the 
cavitation number is shown in Figure 8. Again the DBEM results compare favourably with both 
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Figure 7. Comparison of DBEM results with water tunnel results of Stinebring et al.,” water tunnel results of Self and 
RipkenZ3 and Reichardt’sZ4 semi-empirical formula for relationship between cavitation number and cavity length for 45” 

conical head 
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Figure 8. Comparison of DBEM results with water tunnel results of Self and RipkenZ3 and Reichardt'sZ4 semi-empirical 
formula for relationship between cavitation number and maximum cavity thickness for 45" conical head 

Self and Ripken's experimental results and Reichardt's semi-empirical formula. The cavity 
thickness is seen to increase with decreasing cavitation number and increasing cavity length. 

To better demonstrate the mechanics of determining the proper cavity length based on the 
closure model, we again consider the body comprised of a 45" conical nose and a cylindrical 
midbody at a cavitation number K =0.25. According to our closure model, the slope of the cavity, 
S, at the body juncture between the nose and midbody should be given by S =  tan(22-5")=0.414. 
For an assumed cavity length the slope of the leading edge of the cavity is approximated from the 
radius at the body juncture and the radii determined by the inner iteration at the first two body 
stations under the cavity. Consistent with quadratic representation of the geometry in the 
DBEM, these three radii together with the quadratic shape functions are used to determine the 
slope at the leading edge of the cavity. The relationship between the assumed cavity length and 
the leading edge slope calculated by the DBEM is shown in Figure 9. From this plot the cavity 
length L as predicted on the basis of our closure model is seen to be given by L=2-6. This 
prediction is substantiated by the water tunnel measurements discussed in the previous para- 
graph. 

RESULTS FOR NON-AXISYMMETRIC FLOWS 

The computation of cavity shapes about axisymmetric bodies at an angle of attack involves non- 
axisymmetric flow fields and is significantly more difficult than for axisymmetric flows. There are 
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Figure 9. Relationship between assumed cavity length and slope of cavity leading edge for 45" conical head at cavitation 
number K = 0.25 

several contributing factors for this increase in difficulty besides the increase in the number of 
parameters necessary to describe the cavity. Both the point of detachment and the cavity length 
become functions of the polar angle about the axis of symmetry of the body. Nevertheless, the 
same closure model as discussed above for axisymmetric bodies at zero angle of attack can be 
extended to axisymmetric bodies at non-zero angle of attack. The extension consists of applying 
the closure condition along individual longitudinal rays defined by the wetted portion of the body 
and the cavity at a given polar angle. However, several complications surfaced in our attempt to 
analyse the non-axisymmetric cavitation problem. The convergence of the inner iteration was 
much more sensitive to the initial cavity estimate. Further, small errors in specifying the point of 
detachment resulted in unrealistic converged cavity shapes. These shapes showed oscillations in 
the cavity thickness at a given body station in the polar direction. 

Because of these difficulties, it was necessary to minimize the number of parameters used to 
describe the cavity. The bodies considered were discretized into 16 longitudinal rays and 19-22 
polar rings (Figure 10). Along each ray the thickness of the cavity is specified at three evenly 
spaced body stations and the shape of the cavity between the body stations is determined by an 
interpolation scheme. The free stream velocity was oriented in the plane defined by rays 1 and 9 so 
that, for example, the radii describing the cavity along ray 2 would be identical to the radii along 
ray 16. Hence the cavity was approximated using a total of 27 parameters. For the bodies 
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Figure 10. Typical boundary element discretization for symmetric body at angle of attack 

considered, the initial cavity shapes were estimated in a similar fashion. as for the axisymmetric 
flows. That is, along a given ray the point of detachment and cavity length were specified. Then 
the initial cavity shape along that ray was approximated by an arc of a circle which was tangent to 
the body at the point of detachment and had the prescribed length. In the outer iteration the 
lengths of the cavity along each ray were adjusted until the converged shape was tangent to the 
body at each point of detachment along the 16 rays. 

The first example of a non-axisymmetric cavity is given by the body comprised of a 45" conical 
nose and a cylindrical midbody at 6" angle of attack with the cavitation number given by K =0.4. 
This example was chosen since the results could be compared with the water tunnel data of 
Rouse.25 Because of the discontinuous body slope, the points of detachment were located at the 
juncture between the nose and midbody. A comparison between the current DBEM results and 
the water tunnel data for the coefficient of pressure along the leeward and windward sides of the 
body is shown in Figure 11. The positive body stations are positioned on the leeward side of the 
body while the negative body stations are positioned on the windward side of the body. As 
mentioned above, the length of the cavity along each ray was adjusted until the separating 
streamline left tangentially to the body. It is seen in Figure 11 that the cavity length on the 
leeward side is longer than on the windward side. Further, the pressure is seen to be higher on the 
windward side of the conical nose. The experimental and numerical cavity lengths and pressures 
agree reasonably well between the water tunnel data and the DBEM results. 

The second example of a non-axisymmetric cavity is for a 1-5 calibre ogive body at 3" angle of 
attack with the cavitation number given by K = 0.24. This example was more difficult to compute 
than the first example because the separation zone is three-dimensional. That is, the points of 
detachment are a function of the polar angle. As mentioned above, perturbations in the location 
of the points of detachment could result in converged solutions with oscillations in the cavity 
thickness in the polar direction. It was therefore necessary to refine the grid in the vicinity of the 
separation region. The cavity shape on the leeward and windward sides of the ogive body is 
shown in Figure 12. Again the cavity length and thickness are larger on the leeward side of the 
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Figure 11.  Comparison of DBEM results with water tunnel results of Rousez5 for coefficient of pressure on body 
comprised of 45" conical head and cylindrical midbody at 6" angle of attack 

body as compared to the windward side. Further, the point of detachment on the leeward side is 
ahead of the point of detachment on the windward side. A plot of the maximum cavity thickness 
as a function of the polar angle is shown in Figure 13. It is seen in the figure that the cavity 
thickness increases monitonically as the polar angle increases from the windward (18W) to the 
leeward (0') side of the body. A plot of the coefficient of pressure along the leeward and windward 
sides of the ogive body is shown in Figure 14. It is qualitatively similar to the plot shown in Figure 
11 for the body comprised of the conical nose and cylindrical midbody. 
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CALCULATION O F  DRAG O N  SUPERCAVITATING CONES 

In this section, drag calculations for a family of cones at zero angle of attack are compared with 
other theory and experiment. The cones are supercavitating, with the cavity leading edge fixed to 
the base of the cone. We use the closure model discussed previously to determine the cavity 
length, i.e. the cavity length is varied until the dividing streamline leaves the cone at the cone 
angle. A graduated mesh is used with the fineness concentrated near the cone/cavity juncture. 

The calculated drag force is composed of three values: one due to the pressure distribution over 
the body, one due to the laminar and/or turbulent skin friction and one due to the base pressure. 
The axisymmetry of the flow field is used to simplify the force integration. The drag coefficient due 
to pressure on the lateral surface is given by 

C =zj ' Cr-dx,  dr 
Dp Ab dx 

where 1 is the length of the cone, 
found from the DBEM solution. In general, the base drag coefficient is given by 

is the area of the base and C, is the coefficient of pressure 

where Pb is the base pressure and q is the dynamic pressure. That is, the base drag pressure is 
simply the cavitation number. The skin friction drag coefficient is given by 

where z is the shear stress on the lateral surface of the cone. 
The shear stress distribution is found using a momentum integral boundary layer solution 

identical to the one described in Reference 22. Both laminar and turbulent boundary layer 
solutions are found with this scheme. The skin friction drag component can make an important 
contribution to the total drag. For example, Wolfe et ~ 1 . ~ ~  found that for a lo" cone with a small 
cavitation number the laminar skin friction drag component represented 44% of the total drag. 
For 30" cones they found that the skin friction drag represented no more than 6% of the total 
drag. We show similar results. For the 30" and 45" cone results presented in this section, the skin 
friction drag contribution is small compared to the pressure drag and base drag contributions. 
However, we include the viscous effects for completeness. 

Drag predictions for 30" and 45" cones for various cavitation numbers are shown in Figure 15. 
The free stream velocity is assumed to be 20 ft s -  ', which is a reasonable value for a water tunnel. 
The Reynolds number based on length for these calculations is 5.1 x lo6 for the 30" cone and 
3.3 x lo6 for the 45" cone, which results in a laminar boundary layer on both cones. Also plotted 
in the figure are experimental results of Cox and MaccollZ6 and O'Neill'' for 30" cones. 
Theoretical predictions due to Plesset and Schaffer2' are also shown in the figure. The DBEM 
predictions show better agreement with experiment for the 30" cone than the predictions of 
Plesset and Schaffer. This is not surprising since Plesset and Schaffer extended their results for 
two-dimensional wedges to the case of axisymmetric cones. 

Pressure distribution over a 30" cone are shown in Figure 16 for K = 0.05. The first curve is the 
DBEM prediction; the second curve is a prediction using the scheme outlined by Wolfe et aLZ2 
Both curves show similar behaviour. The pressure coefficient decreases monotonically from the 
tip of the cone until the cavitation number is reached at the base of the cone. The solution of 
Wolfe et al. is found using an axial distribution of sources and sinks which limits the solution to 
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Figure 15. Comparison of DBEM results with water tunnel results of Cox and Macco1lZ6 and O”eil118 and theoretical 
predictions of P1esse.t and Schaffer” for drag on 30” and 45” cones 

axisymmetric flows. Further, because of numerical ill-conditioning, the scheme due to Wolfe et al. 
is limited to slender bodies. 

The influence of the assumed cavity length (the outer iteration parameter) on the drag 
calculation is shown in Figure 17. Drag coefficients are determined for a 30” cone at a cavitation 
number K=0.15 for various assumed cavity lengths. In all cases the pressure along the 
supercavity has converged to the prescribed cavitation number except at the leading edge of the 
cavity. The cavity with a length of 3.375 diameters results in the correct drag when compared with 
experiment. This is also the length that satisfies our closure model. That is, the supercavity leaves 
the cone at the cone angle with a length of 3.375 diameters. For shorter assumed cavity lengths 
the supercavity leaves the cone at an angle less than the cone angle and the calculated drag is 
lower than the experimental values. For longer assumed cavity lengths the supercavity leaves the 
cone at an angle greater than the cone angle and the calculated drag is higher than the 
experimental values. 

DISCUSSION 

A numerical method based on the boundary element method for calculating cavity shapes on 
axisymmetric bodies at zero and non-zero angles of attack has been developed. In order to 
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Figure 16. Pressure distribution on supercavitating 30" cone at cavitation number K =0.05 

properly model the cavity, it is necessary to be able to estimate the cavity length. This problem 
has been directly addressed with the development of a new closure model that relates the point of 
detachment, the angle that the separating streamline makes with the body and the cavity length. 
The closure model has been incorporated into a numerical algorithm based on the direct 
boundary element method. The model has been extensively tested by comparisons of the 
numerical predictions with water tunnel measurements. Calculations for both symmetric and 
non-symmetric flow fields have been performed. 

The non-symmetric three-dimensional problem is significantly more difficult computationally 
because of the sensitivity of the cavity shape to small perturbations of cavity length in a given 
direction. In fact, in many cases the inner iteration to determine a constant pressure streamline 
failed to converge because the initial estimate of the cavity shape was inadequate. The sensitivity 
of the converged solution to the three-dimensional detachment and reattachment zones under- 
scores the importance of being able to accurately determine the extent of the cavity for non- 
axisymmetric flows. The three-dimensional results presented in this paper are limited. We have 
only considered axisymmetric bodies at small angles of attack. For larger angles of attack, where 
separation occurs, our models will certainly break down. Further, modelling of complex three- 
dimensional bodies such as bodies with tip vortices is still beyond our capabilities. 

We have limited our attention in this investigation to relatively slender bodies for which the 
smooth separation condition can be assumed. However, we feel that our closure model can 
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Figure 17. Relationship between assumed cavity length and drag on 30” cone at cavitation number K =0.15 

possibly be extended to viscous laminar separation for which the smooth separation condition 
has been shown to be violated. from water tunnel photographs of viscous laminar separation it 
appears that the dividing streamline leaves the body at an oblique angle just downstream of the 
laminar separation bubble. By incorporating information from water tunnel experiments and 
information obtained from numerical simulations of laminar separation, it may be possible to 
determine empirical expressions for the position of the leading edge of the cavity and the angle 
that the dividing streamline makes with the body that can be incorporated into the current 
closure model, which will again allow for accurate modelling of the cavity. 
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